Trapping atoms using nanoscale quantum vacuum forces
نویسندگان
چکیده
Quantum vacuum forces dictate the interaction between individual atoms and dielectric surfaces at nanoscale distances. For example, their large strengths typically overwhelm externally applied forces, which makes it challenging to controllably interface cold atoms with nearby nanophotonic systems. Here we theoretically show that it is possible to tailor the vacuum forces themselves to provide strong trapping potentials. Our proposed trapping scheme takes advantage of the attractive ground-state potential and adiabatic dressing with an excited state whose potential is engineered to be resonantly enhanced and repulsive. This procedure yields a strong metastable trap, with the fraction of excited-state population scaling inversely with the quality factor of the resonance of the dielectric structure. We analyse realistic limitations to the trap lifetime and discuss possible applications that might emerge from the large trap depths and nanoscale confinement.
منابع مشابه
Vacuum-stimulated cooling of single atoms in three dimensions
Taming quantum dynamical processes is the key to novel applications of quantum physics, e.g. in quantum information science. The control of light-matter interactions at the single-atom and single-photon level can be achieved in cavity quantum electrodynamics, in particular in the regime of strong coupling where atom and cavity form a single entity. In the optical domain, this requires a single ...
متن کاملTrapping and manipulation of isolated atoms using nanoscale plasmonic structures.
We propose and analyze a scheme to interface individual neutral atoms with nanoscale solid-state systems. The interface is enabled by optically trapping the atom via the strong near-field generated by a sharp metallic nanotip. We show that under realistic conditions, a neutral atom can be trapped with position uncertainties of just a few nanometers, and within tens of nanometers of other surfac...
متن کاملCold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions.
The strong evanescent field around ultrathin unclad optical fibers bears a high potential for detecting, trapping, and manipulating cold atoms. Introducing such a fiber into a cold-atom cloud, we investigate the interaction of a small number of cold cesium atoms with the guided fiber mode and with the fiber surface. Using high resolution spectroscopy, we observe and analyze light-induced dipole...
متن کاملTrapping of single atoms in cavity QED
By integrating the techniques of laser cooling and trapping with those of cavity quantum electrodynamics (QED), single Cesium atoms have been trapped within the mode of a small, high finesse optical cavity in a regime of strong coupling. The observed lifetime for individual atoms trapped within the cavity mode is τ ≈ 28ms, and is limited by fluctuations of light forces arising from the far-detu...
متن کاملQuantum Wires and Quantum Dots for Neutral Atoms
By placing changeable nanofabricated structures (wires, dots, etc.) on an atom mirror one can design guiding and trapping potentials for atoms. These potentials are similar to the electrostatic potentials which trap and guide electrons in semiconductor quantum devices like quantum wires and quantum dots. This technique will allow the fabrication of nanoscale atom optical devices. PACS. 03.75.Be...
متن کامل